30 research outputs found

    Alternate trait-based leaf respiration schemes evaluated at ecosystem-scale through carbon optimization modeling and canopy property data

    Get PDF
    Leaf maintenance respiration (Rleaf,m) is a major but poorly understood component of the terrestrial carbon cycle (C). Earth systems models (ESMs) use simple sub‐models relating Rleaf,m to leaf traits, applied at canopy scale. Rleaf,m models vary depending on which leaf N traits they incorporate (e.g., mass or area based) and the form of relationship (linear or nonlinear). To simulate vegetation responses to global change, some ESMs include ecological optimization to identify canopy structures that maximize net C accumulation. However, the implications for optimization of using alternate leaf‐scale empirical Rleaf,m models are undetermined. Here we combine alternate well‐known empirical models of Rleaf,m with a process model of canopy photosynthesis. We quantify how net canopy exports of C vary with leaf area index (LAI) and total canopy N (TCN). Using data from tropical and arctic canopies, we show that estimates of canopy Rleaf,m vary widely among the three models. Using an optimization framework, we show that the LAI and TCN values maximizing C export depends strongly on the Rleaf,m model used. No single model could match observed arctic and tropical LAI‐TCN patterns with predictions of optimal LAI‐TCN. We recommend caution in using leaf‐scale empirical models for components of ESMs at canopy‐scale. Rleaf,m models may produce reasonable results for a specified LAI, but, due to their varied representations of Rleaf,mfoliar N sensitivity, are associated with different and potentially unrealistic optimization dynamics at canopy scale. We recommend ESMs to be evaluated using response surfaces of canopy C export in LAI‐TCN space to understand and mitigate these risks

    Challenges in Scaling Up Greenhouse Gas Fluxes: Experience From the UK Greenhouse Gas Emissions and Feedbacks Program

    Get PDF
    The role of greenhouse gases (GHGs) in global climate change is now well recognized and there is a clear need to measure emissions and verify the efficacy of mitigation measures. To this end, reliable estimates are needed of the GHG balance at the national scale and over long time periods, but these estimates are difficult to make accurately. Because measurement techniques are generally restricted to relatively small spatial and temporal scales, there is a fundamental problem in translating these into long-term estimates on a regional scale. The key challenge lies in spatial and temporal upscaling of short-term, point observations to estimate large-scale annual totals, and quantify the uncertainty associated with this upscaling. Here, we review some approaches to this problem and synthesize the work in the recent UK Greenhouse Gas Emissions and Feedbacks Program, which was designed to identify and address these challenges. Approaches to the scaling problem included: instrumentation developments which mean that near-continuous data sets can be produced with larger spatial coverage; geostatistical methods which address the problem of extrapolating to larger domains, using spatial information in the data; more rigorous statistical methods which characterize the uncertainty in extrapolating to longer time scales; analytical approaches to estimating model aggregation error; enhanced estimates of C flux measurement error; and novel uses of remote sensing data to calibrate process models for generating probabilistic regional C flux estimates
    corecore